
Most designers, especially those who are new to computer systems, assume
the only way to work with a computer is to use interactive software. Indeed,
graphical user interfaces (GUI’s, pronounced goo-eez) are taken so much for
granted that it may appear strange, if not bizarre, to reject the ease-of-use that
such systems offer in favour of an environment based on text and scripting.
What possible advantage could there be in using a keyboard rather than a
mouse for graphical input? Why exchange pull-down menu’s, floating
windows, dialog boxes and icons for an unfamiliar way of making images that
requires a large investment of time to master and that emphasises thought,
care and perfect attention to detail? The answer to these questions lies
principally in the nature of a GUI.

The problem with interactive software is that their interfaces are designed to
hide the intricacies of the algorithms and techniques upon which they are
based. Infact, just as a conjurer deceptively presents fiction as fact, GUI’s
organise their illusions around metaphors that routinely entice us to accept
the impossible. For example, in illustration software such as Aldus FreeHand
or Adobe Illustrator, users interact with elements of their artwork as if they are
on separate layers. Even operating systems encourage users to perceive
windows as being stacked and ordered into layers. Thus, windows can be
moved to the front or sent to the ‘back’. But the notion that an image on a
computer screen can have depth, let alone be comprised of layers, is pure
fiction. This course is intended to take you behind the illusions in order to
more fully understand the principles of 3D modelling and rendering.

Working in the area of 3D computer graphics without a GUI involves
communicating directly with a software package called a renderer. A renderer
is somewhat like a laser printer but instead of turning a 2D page description,
normally in a computer language called PostScript, into a printed image, it
accepts a 3D scene description and converts, or renders, it as an image that is
either viewed on the computer monitor, or saved as an image file. Because
most renderers are embedded within an interactive modeller or animation
system the ways in which they can be used are strictly limited by the ‘host’
software. Infact, the only people who can really ‘get at the renderer’ are the
programmers who wrote the modelling or animation software!

Renderers also form part of software libraries used on high-end graphics
workstations. But these require a knowledge of a programing language such
as “C”, and traditionally, artists and designers have not been given access to
such skills. Fortunately, there is a renderer that supports the type of commun-
ication that we require–PRMAN is part of the innovative RenderMan system
developed by PIXAR. RenderMan is intended to support the production of
photo-realistic images based on a ‘mini language’ called RIB–RenderMan
Interface Bytestream. The intention of RenderMan is to separate modelling
from rendering. In formulating their scene description standard, PIXAR
established a number of rules by which the characteristics of a virtual world,

Introduction

Interactivity v scripting

Introduction 1•1

Illusions and interfaces

RenderMan

and a virtual camera to view that world, can be communicated to a renderer.
Because RenderMan organises the way modellers can pass information to
renderers, PIXAR refers to their system as an interface. Information about a
3D scene is written as text and is stored in a RIB file. Normally these files are
produced by an interactive modelling or animation application and are rarely
seen by a naive user of a computer system. However, because the details of
the RenderMan Interface have been published by PIXAR, anyone with access
to a word processor can write or edit a RIB file “by hand” and can gain greater
control over the entire image making process. In this course you will use
RenderMan to explore the fundamentals of photo-realistic 3D computer
graphics.

Scripts are used to convey information about a production or performance.
The samples given below are examples of textural and symbolic scripts. What
ever form it takes, a script typically enables an author to pass sufficient
information about the structure of a performance so that it can be, in some
sense, true or faithfull to the original design. To work effectively, a script must
adhere to certain rules that are understood by the author and the performer.
For example, it would be a disaster for an actor playing the role of King Henry
to speak the lines given in italics, “Aumerle locks the door.”

Introduction 1•2

 	 	 Enter Bolingbroke, crowned King Henry, with
 		 	 	 Harry Percy, and other nobles
AUMERLE (rising)
 	 Then give me leave that I may turn the key,		 	 35
 	 	That no man enter till my tale be done.
KING HENRY
 	 Have thy desire.
		 	 	 Aumerle locks the door.
		 	 	 The Duke of York knocks at the door and crieth
YORK (within) My liege, beware! Look to thyself!
 	 Thou hast a traitor in thy presence there.
		 	 	 King Henry draws his sword
KING HENRY (to Aumerle) Villain, I’ll make thee safe.

What is a Script?

Richard II Act 5.3 – scripting a theatrical performance

 (NeXT Digital Press 1988)

The scripting you will use in this course is no different to any other type of
traditional scripting–you will be the author, PRMAN will be the performer
and you will both conform to the rules defined by RenderMan.

If scripting is so powerful it is appropriate to ask why interactive software is so
popular? The answer lies in the breadth and flexibility of modern software
design. In a production environment the majority of tasks a designer needs to
address can be quickly and adequately tackled with interactive software. But
for those who undertake innovative and experimental work, scripting of one
kind or another, can offer significant advantages. At one end of the scale,
scripting can mean writing an entire software package and at the other end it
can mean writing so-called macro’s for a spreadsheet. In an educational
context, and more especially for a third level degree course, an investigative
approach based on scripting means you will learn the general principles of 3D
work rather than a single implementation. However, it should be recognized
that RIB scripts (files) are NOT normally written by hand, but are usually
produced by modelling and animation software and these can handle levels of
modelling detail that would be impossible for any human to reproduce
manually.

The Labanotation System – scripting human movement

low middle high

forward side backward

Why use scripting?

(The New Encyclopaedia Britannica vol 7 page 78)

From Three Pieces for String Quartet (No. 1) by Igor Stravinsky
– notation for scripting music

(The New Encyclopaedia Britannica vol 24 page 530)

Introduction 1•3

